Journal of Organometallic Chemistry, 279 (1985) 403-412 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CRYSTAL STRUCTURE OF $(\eta^5 - C_5 H_5) \dot{W} | C(Ph)C(CMe_3) \dot{C}(Ph) | Cl_2,$ A MOLECULE POSSESSING A LOCALIZED, NON-PLANAR TUNGSTENACYCLOBUTADIENE RING

MELVYN ROWEN CHURCHILL * and JOSEPH W. ZILLER

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214 (U.S.A.) (Received May 30th, 1984)

Summary

The complex $(\eta^5 - C_5 H_5) \dot{W}[C(Ph)C(CMe_3)\dot{C}(Ph)]Cl_2$ has been studied by X-ray diffraction techniques. This complex crystallizes in the centrosymmetric monoclinic space group $P2_1/c$ (C_{2h}^5 ; No. 14) with a 9.8594(38), b 10.8206(17), c 20.580(11) Å, β 92.882(38)°, V 2192.8(15) Å^3 and D(calcd) 1.72 g cm⁻³ for mol. wt. 567.2 and Z = 4. Diffraction data were collected with a Syntex P2₁ diffractometer and the structure was solved and refined to R_F 3.1% and R_{wF} 2.6% for all 2599 data with $2\theta = 4.5-45.0^\circ$. The tungsten atom has a coordination environment resembling a "fourlegged piano stool". The tungstenacyclobutadiene system is non-planar and localized, individual distances around the WC₃ system being (cyclically) W=C(6) 1.943(5), C(6)-C(1) 1.485(7), C(1)=C(13) 1.372(8), and C(13)-W 2.132(5) Å; the W...C(1) distance of 2.339(5) Å is essentially non-bonding.

Introduction

Metallacyclobutadienes are of current interest because they are implicated as intermediates in the metathesis of alkynes [1] see eq. 1. The nature of the inter-

mediate metallacyclobutadiene system is unknown; in principle, it could be a delocalized system or it could exist in two discrete forms (i.e., A and B of eq. 1).

^{*} Address correspondence to this author.

A number of metallacyclobutadiene complexes have now been studied by X-ray diffraction techniques. All have planar delocalized MC₃ rings. Those of the Group VIII elements (e.g., Rh(C₃Ph₃)(PMe₂Ph)₂Cl₂ [2] and [Ir(C₃Ph₃)(PMe₃)₂(CO)Cl⁺] [3]) have an MC₃ system that is elongated along the M...C(β) axis. Those of the earlier transition metal elements (e.g. W[C(CMe₃)C(Me)C(Me)]Cl₃ [4,5], W[C₃Et₃][O-2,6-C₆H₃(i-Pr)₂]₃ [6] and W[C₃Et₃][OCH(CF₃)₂]₃ [7]) have an MC₃ system that is compressed along the M...C(β) axis; it has been suggested that there is substantial direct M-C(β) bonding in these species [8].

The reaction of disubstituted acetylenes with the species $(\eta^5 - C_5 H_5)W$. ($\equiv CCMe_3)Cl_2$ has been shown [9] to give rise to tungstenacyclobutadiene complexes. We now report the detailed molecular structure of the species $(\eta^5 - C_5H_5)W[C(Ph)C(CMe_3)C(Ph)]Cl_2$ made in this manner and we show that it is the first example of a localized non-planar metallacyclobutadiene complex.

Experimental

Data collection. A crystalline sample of the complex was provided by Professor R.R. Schrock (M.I.T.). A dark-red crystal of approximate dimensions $0.10 \times 0.17 \times 0.35$ mm was mounted along its extended direction in a thin-walled glass capillary

TABLE 1

EXPERIMENTAL DATA FOR THE X-RAY DIFFRACTION STUDY OF $(\eta^5-C_5H_5)-W[C(Ph)C(CMe_3)C(Ph)]Cl_2$

(A) Crystallographic parameters at 23°C (296 K)	
crystal system: monoclinic	V 2192.8(15) Å ³
Space group: $P2_1/c$ (C_{2h}^5 ; No. 14)	formula: C ₂₄ H ₂₄ Cl ₂ W
a 9.8594(38) Å	molec. wt 567.2
b 10.8206(17) Å	Z = 4
c 20.580(11) Å	$D(\text{calcd}) 1.72 \text{ g cm}^{-3}$
β 92.882(38)°	μ (Mo- K_{α}) 58.2 cm ⁻¹
(B) Collection of X-ray diffraction data	
Diffractometer: Syntex P21	
Radiation: Mo- K_{α} ($\overline{\lambda}$ 0.710730 Å)	
Monochromator: highly oriented (pyrolytic) graphite, 2	$\theta(m) \ 12.160^{\circ}$
for 002 reflection, equatorial mode, as	sumed to be 50%
perfect/50% ideally mosaic for polarity	zation correction
Reflections measured: $+h$, $+k$, $\pm l$ for $2\theta = 4.5-45.0^{\circ}$; 2738 reflections
measured and merged to 2599 ur	nique data
(filename WPHA, No. 155)	
Scan type: coupled θ (crystal)-2 θ (counter)	
Scan width, deg: $[2\theta(\text{Mo-}K_{\alpha_1})-1.0] \rightarrow [2\theta(\text{Mo-}K_{\alpha_2})+1.0]$	0]
Scan speed (deg/min): 2.50	
Background measurement: stationary-crystal and station	nary counter
at each end of the 2θ scan;	each for one-half
total scan time	
Standards: 3 approximately mutually orthogonal check	reflections were
remeasured after each batch of 97 reflect observed	ions; no significant fluctuation nor decay was

under an argon atmosphere. The crystal was accurately aligned and centered on our Syntex P2₁ automated four-circle diffractometer and X-ray data were collected as has been described previously [10]; details appear in Table 1. Following data collection we collected ψ -scans of four reasonably intense close-to-axial reflections (at well-spaced 2θ values) and used these to provide an empirical absorption correction (interpolating both in 2θ and ϕ) for all diffraction data. All data were then corrected for Lorentz and polarization effects and converted to approximately absolute $|F_0|$ values by means of a Wilson plot. No datum was rejected; any reflection with $I(net) \leq 0$ was assigned a value of $|F_0| = 0$.

The systematic absences h0l for l = 2n + 1 and 0k0 for k = 2n + 1 uniquely define the centrosymmetric monoclinic space group $P2_1/c$.

Solution and refinement of the structure

All crystallographic calculations were performed on our in-house Syntex XTL system consisting of a Data General NOVA 1200 computer (with parallel floating-point processor), a Diablo disk unit, a Versatec printer/plotter and our locally modified version of the XTL interactive program package. The analytical form of the scattering factor for the appropriate neutral atoms was used in calculating F_c values; these were corrected both for the real ($\Delta f'$) and imaginary ($\Delta f''$) components of anomalous dispersion [11]. The function minimized during least-squares refinement was $\Sigma w(|F_0| - |F_c|)^2$ with $1/w = \{\sigma(|F_0|)\}^2 + \{0.015|F_0|\}^2$.

The structure was solved by direct methods using the program MULTAN [12]. The WCl_2 portion was readily located from an *E*-map; the remaining non-hydrogen atoms were all located from the first difference-Fourier synthesis. Full-matrix least-squares refinement using anisotropic thermal parameters for all non-hydrogen atoms (244 variables in all) led to convergence with the following discrepancy indices for all 2599 data (none rejected).

$$R_{F} = {}^{100} \left[\frac{\Sigma ||F_{0}| - |F_{c}||}{\Sigma |F_{0}|} \right] = 3.1\%$$

$$R_{wF} = {}^{100} \left[\frac{\Sigma w (|F_{0}| - |F_{c}|)^{2}}{\Sigma w |F_{0}|^{2}} \right]^{1/2} = 2.6\%$$

$$GOF = \left[\frac{\Sigma w (|F_{0}| - |F_{c}|)^{2}}{(NO - NV)} \right]^{1/2} = 1.086$$

Here, NO is the number of observations and NV is the number of variables.

The discrepancy indices for those 2319 data with $|F_0| > 3.0\sigma(|F_0|)$ were $R_F 2.4\%$ and $R_{wF} 2.5\%$.

Throughout the refinement process, hydrogen atoms were included in calculated positions based upon d(C-H) 0.95 Å [13] and the appropriate trigonal planar (sp^2) or staggered tetrahedral (sp^3) geometry; these positions were not refined, but were continuously up-dated with respect to their attached carbon atoms.

A final difference-Fourier synthesis showed no significant features and tests of the weighting scheme revealed no anomalies. The structure is thus both correct and complete. Final positional and thermal parameters are listed in Tables 2 and 3.

406

TABLE 2

FINAL ATOMIC POSITIONS (with esd's) FOR $(\eta^5-C_5H_5)W[C(Ph)C(CMe_3)C(Ph)]Cl_2$

Atom	x	y	2	$B(Å^2)$
w	0.11511(2)	0.07686(2)	0.15126(1)	
Cl(1)	0.17819(15)	0.18409(14)	0.05377(8)	
Cl(2)	0.19528(16)	0.27010(13)	0.20101(8)	
C(1)	0.3186(5)	-0.0294(5)	0.17385(28)	
C(2)	0.4665(5)	- 0.0182(6)	0.15351(30)	
C(3)	0.5521(7)	-0.1263(9)	0.1763(5)	
C(4)	0.4673(7)	-0.0140(11)	0.0809(4)	
C(5)	0.5277(8)	0.0964(9)	0.1825(6)	
C(6)	0.2029(5)	-0.0791(5)	0.13291(26)	
C(7)	0.1897(5)	-0.2087(5)	0.11505(27)	
C(8)	0.1143(6)	-0.2428(6)	0.05883(30)	
C(9)	0.1037(7)	-0.3669(6)	0.0409(4)	
C(10)	0.1641(7)	-0.4569(5)	0.0805(4)	
C(11)	0.2379(6)	- 0.4234(6)	0.13592(34)	
C(12)	0.2516(6)	-0.3015(5)	0.15361(30)	
C(13)	0.2524(5)	0.0114(4)	0.22686(28)	
C(14)	0.2869(5)	0.0193(6)	0.29586(29)	
C(15)	0.2189(7)	0.0975(7)	0.33615(34)	
C(16)	0.2504(9)	0.1002(8)	0.4026(4)	
C(17)	0.3438(9)	0.0238(11)	0.4303(4)	
C(18)	0.4091(9)	-0.0585(10)	0.3916(4)	
C(19)	0.3808(7)	-0.0600(7)	0.32504(34)	
Cp(1)	-0.0888(6)	0.0074(7)	0.10378(34)	
Cp(2)	-0.0645(6)	-0.0522(6)	0.1651(4)	
Cp(3)	-0.0661(6)	0.0358(7)	0.21388(33)	
Cp(4)	-0.0962(6)	0.1509(7)	0.1854(4)	
Cp(5)	-0.1075(6)	0.1355(7)	0.1179(4)	
H(31)	0.6421	-0.1158	0.1627	6.0
H(32)	0.5533	-0.1311	0.2223	6.0
H(33)	0.5149	-0.2003	0.1580	6.0
H(41)	0.5581	-0.0070	0.0680	6.0
H(42)	0.4278	-0.0875	0.0633	6.0
H(43)	0.4163	0.0554	0.0653	6.0
H(51)	0.6188	0.1039	0.1701	6.0
H(52)	0.4769	0.1661	0.1671	6.0
H(53)	0.5261	0.0922	0.2285	6.0
H(8)	0.0699	-0.1812	0.0325	6.0
H(9)	0.0551	-0.3896	0.0017	6.0
H(10)	0.1543		0.0692	6.0
H(11)	0.2802	-0.4854	0.1625	6.0
H(12)	0.3032	-0.2800	0.1921	6.0
$\Pi(15)$ $\Pi(16)$	0.1497	0.1501	0.3181	6.0
$\Pi(10)$	0.2049	0.1373	0.4290	6.0
n(17) H(18)	0.3044	0.0200	0.4708	0.U
H(10)	0.4737	-0.1145	0 4100	6.0
$HC_{n}(1)$	-0.0970	-0.0302	0.2707	6.0
HCp(1)	-0.0920	-0.0302	0.0020	50 50
HCp(3)	-0.0496	0.1302	0.1715	6.0
HCp(4)	-0.1070	0.0200	0.2090	6.0
$HC_{p}(5)$	-0.1246	0.1001	0.2001	6.0
	0.1470	V11771	0.0007	0.0

Description of the molecular structure of $(\eta^5 - C_5H_5)W|C(Ph)C(CMe_3)C(Ph)|Cl_2$

The crystal contains an ordered arrangement of discrete monomeric molecular units which are well separated; there are no unusually short intermolecular contacts. The overall molecular geometry and atomic labelling scheme are illustrated in Fig. 1. A stereoscopic view of the molecule is provided in Fig. 2. Interatomic distances and angles are collected in Tables 4 and 5 while intramolecular planes (and dihedral angles) are presented in Table 6.

By our customary method of electron counting the central tungsten atom is in a formal oxidation state of +6 and is linked to two chloride ions, one η^5 -C₅H₅⁻ anion and (formally) a chelating [C(Ph)C(CMe₃)C(Ph)]³⁻ trianion; the complex has a total of 16 outer valence electrons (i.e., 2 short of the "noble gas configuration"). The coordination geometry about the d^0 W^{VI} center is that of a slightly distorted "four-legged piano stool". Angles from "Cp" (the centroid of the η^5 -C₅H₅ ligand) to the other ligands are fairly regular, with Cp–W–Cl(1) 113.68°, Cp–W–Cl(2) 111.95°, Cp–W–C(6) 111.23° and Cp–W–C(13) 120.66°. Angles between the "legs" are far less regular, with *cis*-angles (cyclically) being Cl(1)–W–Cl(2) 81.15(5)°, Cl(2)–

TABLE 3

FINAL ANISOTROPIC THERMAL PARAMETERS " FOR $(\eta^5 - C_5 H_5) \dot{W}[C(Ph)C(CMe_3)\dot{C}(Ph)]Cl_2$

Atom	B _{1,1}	B _{2,2}	B _{3,3}	B _{1,2}	B _{1,3}	B _{2,3}
w	1.970(10)	1.996(10)	2.471(13)	0.004(8)	-0.146(7)	0.075(9)
Cl(1)	4.13(7)	3.52(7)	3.19(8)	-0.40(6)	-0.20(6)	0.98(6)
Cl(2)	5.28(8)	2.30(6)	4.18(9)	-0.26(6)	-0.27(7)	-0.55(6)
C(1)	2.43(23)	1.96(22)	2.50(32)	0.20(19)	-0.47(22)	0.30(21)
C(2)	2.21(24)	4.53(31)	2.66(32)	0.00(22)	0.12(22)	0.04(25)
C(3)	2.77(31)	9.8(6)	10.7(7)	2.80(35)	1.6(4)	3.9(5)
C(4)	3.32(33)	17.3(9)	3.9(4)	0.5(4)	0.92(29)	1.9(5)
C(5)	4.7(4)	8.7(6)	15.9(9)	-4.0(4)	4.7(5)	-6.0(6)
C(6)	2.11(21)	2.52(23)	2.05(27)	-0.06(19)	-0.31(19)	0.18(21)
C(7)	2,33(22)	2.04(24)	2.78(29)	0.05(19)	-0.16(21)	-0.15(21)
C(8)	4.02(28)	3.42(30)	3.35(33)	0.26(23)	-1.17(25)	-0.42(25)
C(9)	5.5(4)	3.23(32)	5.8(4)	-0.31(28)	-1.65(33)	-1.49(30)
C(10)	5.20(35)	2.01(28)	6.7(5)	-0.57(25)	0.79(34)	-0.88(28)
C(11)	4.57(31)	2.82(29)	4.5(4)	0.48(25)	0.20(28)	0.47(28)
C(12)	3.34(26)	2.37(28)	3.77(34)	0.21(21)	-0.04(24)	0.12(23)
C(13)	2.56(23)	1.09(21)	3.08(34)	-0.45(18)	0.13(23)	-0.19(21)
C(14)	2.88(25)	3.55(27)	2.28(32)	0.11(22)	0.19(24)	-0.32(24)
C(15)	5.00(34)	5.7(4)	3.2(4)	0.53(29)	-0.01(30)	-0.72(30)
C(16)	6.8(4)	7.7(5)	3.2(4)	0.4(4)	0.9(4)	-1.4(4)
C(17)	6.2(5)	12.7(8)	2.9(4)	-1.3(5)	-0.4(4)	-0.5(5)
C(18)	7.8(5)	10.8(7)	2.9(4)	2.1(5)	-0.6(4)	1.5(4)
C(19)	6.3(4)	7.1(5)	2.55(35)	1.81(35)	0.19(32)	0.64(31)
Cp(1)	2.07(26)	5.7(4)	4.8(4)	-0.90(25)	-0.00(26)	-0.82(33)
Cp(2)	2.24(25)	3.82(33)	5.1(4)	-0.93(22)	0.36(25)	0.91(30)
Cp(3)	2.20(25)	6.2(4)	3.7(4)	0.00(25)	1.19(24)	0.31(32)
Cp(4)	2.62(28)	5.2(4)	6.1(5)	0.95(26)	0.84(29)	-0.81(35)
Cp(5)	2.26(27)	5.8(4)	5.9(5)	0.88(26)	0.33(29)	1.0(4)

^a The anisotropic thermal parameters enter the expression for the calculated structure factor in the form: $\exp\left[-0.25\left(h^2a^{\star 2}B_{1,1}+k^2b^{\star 2}B_{2,2}+l^2c^{\star 2}B_{3,3}+2hka^{\star}b^{\star}B_{1,2}+2hla^{\star}c^{\star}B_{1,3}+2klb^{\star}c^{\star}B_{2,3}\right)\right].$ W-C(13) 78.37(14)°, C(13)-W-C(6) 65.18(20)° and C(6)-W-Cl(1) 96.87(15)°, while *trans*-angles are Cl(1)-W-C(13) 125.65(14)° and Cl(2)-W-C(6) 133.44(15)°.

The tungsten-chloride distances (W-Cl(1) 2.426(2) and W-Cl(2) 2.442(2)) Å; average 2.434 Å) suggest a covalent radius of about 1.44 Å (i.e., 2.43-0.99 Å) for the tungsten(VI) atom.

Tungsten-carbon $(\eta^5 \cdot C_5 \cdot H_5)$ distances range from W-Cp(2) 2.285(6) Å through W-Cp(4) 2.372(6) Å, the average such distance being 2.325 Å. The W-Cp distance is 1.993 Å ("Cp" is the centroid of the $\eta^5 \cdot C_5 \cdot H_5$ system). The $\eta^5 \cdot C_5 \cdot H_5$ ligand has D_{5h}

Fig. 1. Labelling of atoms in the $(\eta^5 - C_5 H_5) \overline{W[C(Ph)C(CMe_3)C(Ph)]Cl_2}$ molecule [ORTEP-II diagram]. Hydrogen atoms are omitted for clarity.

Fig. 2. Stereoscopic view of the $(\eta^5 - C_5 H_5) W[C(Ph)C(CMe_3)C(Ph)]Cl_2$ molecule with all hydrogen atoms included in idealized positions.

(A) Distances from th	he Tungsten Atom			
W-Cl(1)	2.426(2)	W-Cp(1)	2.317(6)	
W-Cl(2)	2.442(2)	W-Cp(2)	2.285(6)	
W-C(6)	1.943(5)	W-Cp(3)	2.299(6)	
W-C(13)	2.132(5)	W-Cp(4)	2.372(6)	
WC(1)	2.339(5)	W-Cp(5)	2.354(6)	
		$W-Cp^{a}$	1.993	
(B) Distances within	the [C(Ph)C(CMe3)C(Ph)] System		
C(1)-C(6)	1.485(7)	C(10)–C(11)	1.370(10)	
C(1)-C(13)	1.372(8)	C(11)-C(12)	1.373(8)	
C(1)-C(2)	1.543(7)	C(12)–C(7)	1.401(8)	
C(2)–C(3)	1.503(11)	C(13)-C(14)	1.446(8)	
C(2)-C(4)	1.494(10)	C(14)–C(15)	1.382(9)	
C(2)-C(5)	1.490(11)	C(15)–C(16)	1.387(10)	
C(6)-C(7)	1.453(7)	C(16)-C(17)	1.344(13)	
C(7)-C(8)	1.393(8)	C(17)–C(18)	1.376(14)	
C(8)-C(9)	1.396(9)	C(18)–C(19)	1.384(11)	
C(9)-C(10)	1.384(10)	C(19)-C(14)	1.378(9)	
(C) Distances within	the $\eta^5 - C_5 H_5$ Ligand			
Cp(1)-Cp(2)	1.426(10)	Cp(4)–Cp(5)	1.398(12)	
Cp(2)-Cp(3)	1.385(10)	Cp(5)-Cp(1)	1.429(11)	
Cp(3)-Cp(4)	1.401(10)			

TABLE 4. INTERATOMIC DISTANCES (IN Å) FOR $(\eta^5-C_5H_5)W[C(Ph)C(CMe_3)C(Ph)]Cl_2$

^a "Cp" is the centroid of the η^5 -cyclopentadienyl ring.

TABLE 5. INTERATOMIC ANGLES (in deg.) FOR (7	$\eta^5 - C_5 H_5) W[C(Ph)C(CMe_3)]$)C(Ph)]Cl ₂
--	--------------------------------------	------------------------

(A) Angles around the tu	ngsten atom		
Cl(1)-W-Cl(2)	81.15(5)	Cl(2)-W-C(13)	78.37(14)
Cl(1) - W - C(6)	96.87(15)	$Cl(2)-W-Cp^{a}$	111.95
Cl(1)-W-C(13)	125.65(14)	C(6) - W - C(13)	65.18(20)
$Cl(1)-W-Cp^{a}$	113.68	$C(6)-W-Cp^{a}$	111.23
Cl(2)-W-C(6)	133.44(15)	$C(13)-W-Cp^{a}$	120.66
(B) Angles around the W	C3 ring		
W-C(6)-C(7)	148.48(39)	C(13)-C(1)-C(2)	133.19(49)
W-C(6)-C(1)	84.93(31)	W-C(13)-C(1)	80.58(33)
C(7)-C(6)-C(1)	123.32(45)	W-C(13)-C(14)	143.74(40)
C(6)-C(1)-C(13)	100.70(44)	C(1)-C(13)-C(14)	134.63(50)
C(6)-C(1)-C(2)	125.77(46)		
(C) Angles within the C(C	CMe ₃) group		
C(1)-C(2)-C(3)	112.22(54)	C(3)-C(2)-C(4)	107.70(62)
C(1)-C(2)-C(4)	109.03(55)	C(3)-C(2)-C(5)	108.28(62)
C(1)-C(2)-C(5)	109.02(56)	C(4)-C(2)-C(5)	110.59(64)
(D) Angles within C(Ph)	systems		
C(6)-C(7)-C(8)	120.17(48)	C(13)-C(14)-C(15)	121.91(54)
C(7)-C(8)-C(9)	120.25(56)	C(14)-C(15)-C(16)	120.88(65)
C(8)-C(9)-C(10)	119.84(63)	C(15)-C(16)-C(17)	121.33(79)
C(9)-C(10)-C(11)	119.88(64)	C(16)-C(17)-C(18)	118.93(89)
C(10)-C(11)-C(12)	121.04(60)	C(17)-C(18)-C(19)	120.21(84)
C(11)-C(12)-C(7)	120.30(53)	C(18)-C(19)-C(14)	121.45(70)
C(12)-C(7)-C(8)	118.65(50)	C(19)-C(14)-C(15)	117.10(59)
C(12)-C(7)-C(6)	121.18(47)	C(19)-C(14)-C(13)	120.71(55)
(E) Angles within the η^{5} -	C ₅ H ₅ ring		
Cp(1)-Cp(2)-Cp(3)	108.80(58)	Cp(4)-Cp(5)-Cp(1)	108.25(63)
Cp(2)-Cp(3)-Cp(4)	108.54(60)	Cp(5)-Cp(1)-Cp(2)	106.06(58)
Cp(3)-Cp(4)-Cp(5)	108.28(63)		

^{*a*} "Cp" is the centroid of the η^5 -C₅H₅ ring.

symmetry within the limits of experimental error. Individual carbon-carbon distances range from Cp(2)-Cp(3) 1.385(10) Å through Cp(5)-Cl(1) 1.429(11) Å, (averaging 1.408 \pm 0.019 Å), the root-mean-square deviation from planarity for the carbon atoms is only 0.011 Å and the tungsten atom lies 1.9911(2) Å below the η^5 -C₅H₅ plane (see plane *E*, Table 6).

We now come to a consideration of the tungstenacyclobutadiene ring. In contradistinction to all other such systems that have been examined crystallographically (i.e., $W[C(CMe)C(Me)C(Me)]Cl_3$ [4,5], $W[C_3Et_3][O-2,6-C_6H_3(i-Pr)_2]_3$ [6] and $W[C_3Et_3][OCH(CF_3)_2]_3$ [7]), the WC₃ ring of the present $W[C(Ph)C(CMe_3)C(Ph)]$ system takes up a localized, non-planar configuration. Thus, the W–C(6) distance of 1.943(5) Å is 0.189 ± 0.007 Å shorter than the W–C(13) bond length of 2.132(5) Å; these distances are consistent with their being tungsten–carbon double and single

TABLE 6

SELECTED INTRAMOLECULAR PLANES FOR $(\eta^5 - C_5 H_5) W[C(Ph)C(CMe_3)C(Ph)]Cl_3$

Atom	dev., Å	Atom	dev., Å
$\overline{(A) The W - C(13) - C}$	(1) plane		
Equation: $0.5054x + 0.5054x$	0.8626y - 0.0215z - 1.	1451 = 0	
w [★]	0.000	C(6)	-1.001(5)
C(13)*	0.000	C(14)	0.179(6)
C(1)*	0.000	C(2)	0.861(6)
(B) The $W - C(6) - C(4)$	I) plane		
Equation: $0.4238x + 0$	0.4032 y - 0.8111z + 1.	7716 = 0	
W*	0.000	C(13)	-1.005(6)
C(6)*	0.000	C(7)	-0.314(5)
C(1)*	0.000	C(2)	1.015(6)
(C) The $C(6) - W - C(1)$	13) plane		
Equation: $0.7690x +$	0.4936y - 0.4063z + 0.	1003 = 0	
C(6)*	0.000	C(7)	-0.628(5)
W*	0.000	C(1)	0.768(5)
C(13)*	0.000	C(14)	-0.328(6)
(D) The $C(6) - C(1) -$	C(13) plane		
Equation: $-0.1075x$	+0.8953y - 0.4323z +	2.1478 = 0	
C(6)★	0.000	C(7)	-1.084(5)
C(1)★	0.000	C(2)	0.130(6)
C(13)*	0.000	C(14)	- 0.565(6)
		W	1.4434(2)
(E) The η^5 -C ₅ H ₅ plan	ıe		
Equation: $0.9851x +$	0.1596y - 0.0638z + 1	0929 = 0	
Cp(1)*	0.001(6)	W	1.9911(2)
Cp(2)*	- 0.009(6)	Cl(1)	3.0162(15)
Cp(3)*	0.014(6)	Cl(2)	2.9876(16)
Cp(4)*	-0.013(6)	C(6)	2.617(5)
Cp(5)*	0.008(6)	C(13)	3.036(5)
		C(1)	3.731(5)
(F) Dihedral angles (i	n degrees)		
A/B	54.59	A/E	50.44
C/D	57.66	B/E	57.75
		C/E	30.43
		D/E	86.30

bonds respectively [14]. Similarly, the C(1)-C(13) distance of 1.372(8) Å is 0.113 ± 0.011 Å shorter than the C(1)-C(6) distance of 1.485(7) Å; these values may be compared to the accepted values of C=C - 1.335 Å and C(sp^2)-C(sp^2) (single bond) ~ 1.465 Å [15]. The non-planarity of the WC₃ system is clearly indicated by the dihedral angles [C(6)-W-C(13)]/[C(6)-C(1)-C(13)] 57.66° and [W-C(13)-C(1)]/[W-C(6)-C(1)] 54.59°.

The W...C(1) distance of 2.339(5) Å is formally non-bonding and is substantially longer than the W-C(β) distances observed in planar delocalized WC₃ systems (viz., W-C(β) 2.115(8) Å in W[C(CMe₃)C(Me)C(Me)]Cl₃ [4,5], 2.159(10) Å in W[C₃Et₃]-[O-2,6-C₆H₃(i-Pr)₂]₃ [6] and 2.093(14) Å and 2.100(15) Å for two independent molecules in W[C₃Et₃][OCH(CF₃)₂]₃ [7]).

Angles within the WC₃ system are C(6)–W–C(13) 65.18(20)°, W–C(13)–C(1) 80.58(33)°, W–C(6)–C(1) 84.93(31)° and C(6)–C(1)–C(13) 100.70(44)°; the external angles at the α -carbon (i.e., W–C(6)–C(7) 148.48(39)° and W–C(13)–C(14) 143.74(40)°) are unusually large and resemble those found for the M=C(α)–C(β) angles in metal alkylidenes [16]; however, this feature is common to both planar and non-planar WC₃ systems.

The present complex, $(\eta^5 - C_5 H_5) \dot{W}[C(Ph)C(CMe_3)\dot{C}(Ph)]Cl_2$, is formed by addition of PhC=CPh to the alkylidyne complex $(\eta^5 - C_5 H_5)W(\equiv CCMe_3)Cl_2$. The reaction requires addition of PhC=CPh to the W=CCMe_3 bond followed by some process that permutes the various CR fragments (since the product no longer has adjacent CPh groups). It it tempting to speculate that this could occur through a "metallatetrahedrane" intermediate (possibly as shown in eq. 2). The case for such an intermediate is greatly strengthened by the recent isolation and structural

characterization of the "tungstenatetrahedrane" complexes $W[C(CMe_3)C(Me)-C(Me)](Me_2NCH_2CH_2NMe_2)Cl_3$ [17,18] and $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me]-(PMe_3)Cl_2$ [19].

<u>Finally</u> we must confess to being presently unsure as to why $W[C(CMe_3)-C(Me)C(Me)]Cl_3$ has a planar localized WC_3 system, whereas the present closely-related species, $(\eta^5-C_5H_5)W[C(Ph)C(CMe_3)C(Ph)]Cl_2$, has a non-planar delocalized WC_3 system. The only changes from the first to the second are (i) substitution of a chloride ligand by an $\eta^5-C_5H_5$ ligand, and (ii) variation in the substituents around the C_3 system (from CMe₃, Me, Me to Ph, <u>CMe_3</u>, Ph). A careful look at the stereoscopic view of the present $(\eta^5-C_5H_5)W[C(Ph)C(CMe_3)C(Ph)]Cl_2$ molecule shows no obvious hindrance to its attaining a planar configuration to the WC₃ ring. We are thus led to suspect that the change is brought about by electronic, rather than steric, factors; the present localized non-planar WC₃ systems are associated with a "16-electron" configuration.

Additional material

A table of observed and calculated structure factor amplitudes is available, upon request, from M.R.C.

Acknowledgements

This work was supported, in part, by Grant CHE80-23448 from the National Science Foundation.

References

- 1 T.J. Katz and J. McGinnis, J. Am. Chem. Soc., 97 (1975) 1592.
- 2 P.D. Frisch and G.P. Khare, Inorg. Chem., 18 (1979) 781.
- 3 R.M. Tuggle and D.L. Weaver, J. Am. Chem. Soc., 92 (1970) 5523.
- 4 S.F. Pedersen, R.R. Schrock, M.R. Churchill and H.J. Wasserman, J. Am. Chem. Soc., 104 (1982) 6808.
- 5 M.R. Churchill and H.J. Wasserman, J. Organomet. Chem., 270 (1984) 201.
- 6 M.R. Churchill, J.W. Ziller, J.H. Freudenberger and R.R. Schrock, Organometallics, 3 (1984) 1554.
- 7 J.H. Freudenberger, R.R. Schrock, M.R. Churchill, A.L. Rheingold and J.W. Ziller, Organometallics, 3 (1984) 1563.
- 8 B.E. Bursten, J. Am. Chem. Soc., 105 (1983) 121.
- 9 M.R. Churchill, J.W. Ziller, L. McCullough, S.F. Pedersen and R.R. Schrock, Organometallics. 2 (1983) 1046.
- 10 M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 11 International Tables for X-Ray Crystallography, Volume 4, Kynoch Press, Birmingham, England, see pp. 99–101 and 149–150.
- 12 G. Germain, P. Main and M.M. Woolfson, Acta Crystallogr., A, 27 (1971) 368.
- 13 M.R. Churchill, Inorg. Chem., 12 (1973) 1213.
- 14 See Table 5 of ref. 5.
- 15 Interatomic Distances, Supplement, Chem. Soc. Spec. Public. No. 18 (1965) pp. S16s-S17s.
- 16 M.R. Churchill and H.J. Wasserman, Inorg. Chem., 22 (1983) 1574; see Table VI on p. 1577.
- 17 M.R. Churchill, J.W. Ziller, S.F. Pedersen and R.R. Schrock, J. Chem. Soc, Chem. Commun. (1984) 485.
- 18 R.R. Schrock, S.F. Pedersen, M.R. Churchill and J.W. Ziller, Organometallics, 3 (1984) 1574
- 19 M.R. Churchill, J.C. Fettinger, L.G. McCullough and R.R. Schrock, J. Amer. Chem. Soc., 106 (1984) 3356.